

UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS

MORFOMETRIA DE RESERVATÓRIOS URBANOS: PROGNÓSTICOS SOBRE O TEMPO DE VIDA ÚTIL DO RESERVATÓRIO DE VARGEM DAS FLORES E INDÍCIOS DE DEGRADAÇÃO NO RESERVATÓRIO DE SERRA AZUL.

Encontro Técnico COPASA

Programa de Pós-Graduação em Ecologia, Conservação e Manejo da Vida Silvestre da UFMG

Simone de Paula dos Santos

Tema da tese: Morfometria, compartimentação e hidrodinâmica de um reservatório periurbano tropical: prognósticos sobre o tempo de vida útil do reservatório de Vargem das Flores, Minas Gerais, Brasil.

Bolsa: CAPES.

Início do curso: março de 2009; Defesa: 27 de abril de 2012.

Denise Pires Fernandes

"Indícios de degradação ambiental em um reservatório urbano oligotrófico (Reservatório de Serra Azul, MG - Brasil): avaliação limnológica, morofometria, batimetria e modelagem hidrodinâmica."

Bolsa: CAPES.

Início do curso: março de 2009; Defesa: 24 de abril de 2012.

Parte I Morfometria e Batimetria

Morfometria de Reservatórios

- Fundamental importância para a compreensão da estrutura e funcionamento do ambiente aquático.
- Influencia em todas as características limnológicas (bóticas e abióticas).
- Impactos antrópicos são influenciados pelas características morfométricas dos reservatórios (profundidade média, volume, etc.).

Objetivos

- Realizar estudos batimétrico e morfométricos em dois reservatórios de abastecimento de água na RMBH.
- Identificar focos de assoreamento e realizar predições a respeito do tempo de vida útil do corpo d'água.
- Indicar as implicações da morfometria nas características limnológicas.

Áreas de estudo

- Importantes mananciais de abastecimento de água para RMBH:
 - Vargem das Flores: Inaugurado no ano de 1972; sua ETA abastece Contagem, Betim e Belo Horizonte (15%).
 - **Serra Azul**: Iniciou operação em 1981 e possui uma ETA que abastece RMBH e situa-se entre os municípios de Mateus Leme Juatuba, Igarapé e Itaúna.

Vargem das Flores

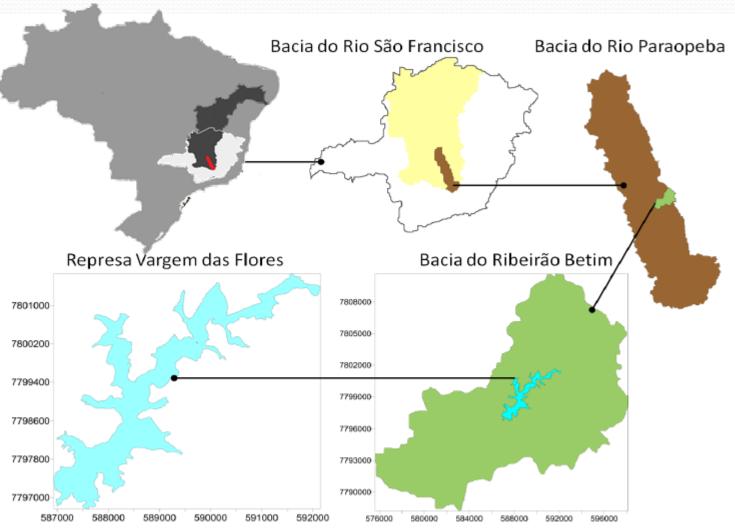

Figura 2. Reservatório Vargem das Flores (Fonte : Google Earth, 2012)

Figura 1. Localização da represa Vargem das Flores, sub-bacia do Ribeirão Betim, Bacia do Paraopeba e área da Bacia do Rio São Francisco contida no estado de Minas Gerais.

Serra Azul

Figura 3. Reservatório de Serra Azul. Área verde no entorno maior comparada a Vargem das Flores.

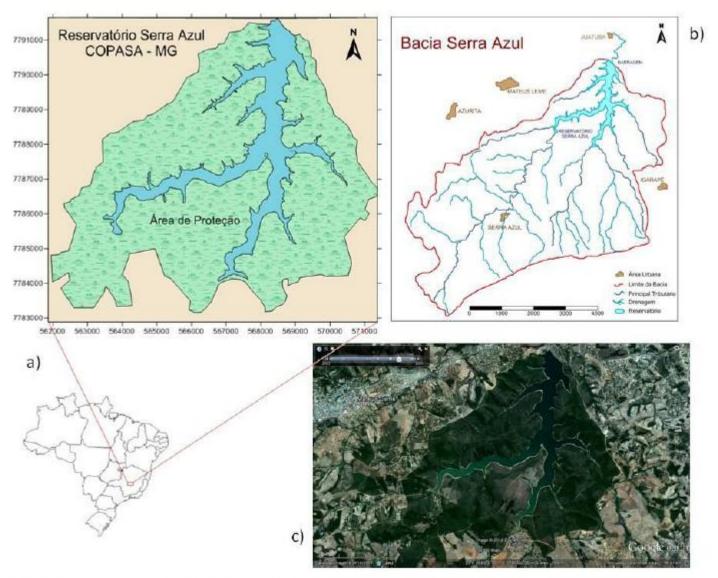


Figura 1 – Reservatório Serra Azul – COPASA. a) Localização do reservatório com identificação da área de proteção. b) Delimitação da Bacia Serra Azul com os principais tributários e as principais cidades adjacentes. c) Imagem histórica de satélite retirada do Google Earth Pro [®], referente a maio de 2008.

Batimetria

- Ecobatímetro SonarLite (Ohmex Ltda.) acoplado à um D-GPS GTR-A® (TechGeo Ltda)
- Trajeto em zigue-zague por toda a área da represa
- Os dados sofrem posterior pos-correção - IBGE

Figura 4. Ecobatímetro SonarLite (Ohmex Instruments). Fonte: Ohmex Instruments. E D-GPS GTR-A® Fonte: TechGeo Ltda D-GPS GTR-A® conectado a estrutura de sustentação acoplada ao barco

Carta Batimétrica

- Google Earth Pro: imagem
- Didger® versão 3.0 (Golden Software Inc.)
 - Georreferenciamento
 - Digitalização
- Surfer® 10 (Golden Software Inc.)
 - Geração da carta batimétrica Kriging
 - Cálculo de volume e área

Transectos batimétricos

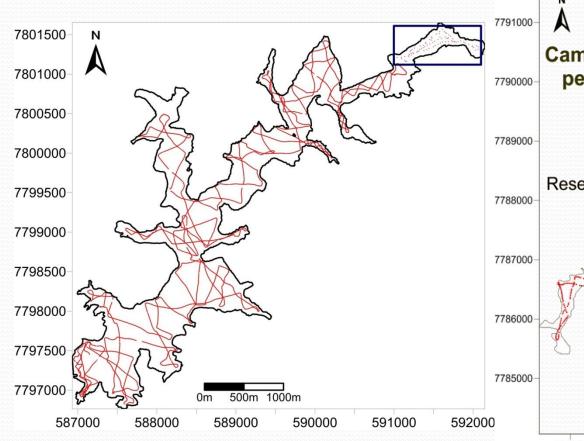


Figura 5. Transectos realizados na coleta batimétrica de 08 de outubro de 2009 no reservatório de Vargem das Flores..

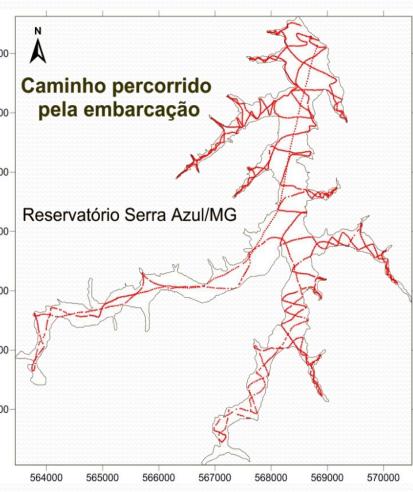
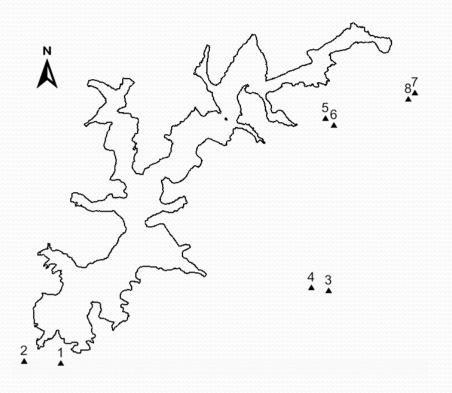



Figura 6. Transectos realizados na coleta batimétrica de 08 de outubro de 2009 no reservatório de Vargem das Flores..

Consolidação de uma base cartográfica

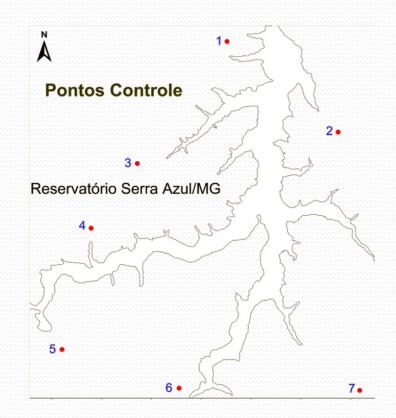


Figura 7: Pontos controle coletados no entorno do reservatório de Vargem das Flores e Serra Azul

Parâmetros morfométricos

Além da área inundada, do volume acumulado, da profundidade máxima, cinco outros parâmetros foram estimados segundo Sperling (1999):

$$Z_{\text{med}=\frac{V}{A}}$$

$$Z_{R=\frac{88,6\times Z_{max}}{\sqrt{A}}}$$

3- Índice de Desenvolvimento do
$$p_p = 0.28 \times \frac{\text{Perímetro}}{\sqrt{A}}$$

Perímetro

4- Índice de Desenvolvimento
$$do_{D_{\mathbf{V}}} = \frac{3 \times Z_{med}}{Z_{max}}$$
 volume

$$F_e = \frac{A_{bacia}}{A_{repress}}$$

Parâmetros morfométricos de Serra Azul e Vargem das Flores

Tabela 2. Parâmetros morfométricos dos reservatórios de Serra Azul e Vargem das Flores

Parâmetros Morfométricos	Serra Azul	Vargem das Flores		
Volume (V) (m³)	81.550.095,18	29.000.000,00		
Área (A) (m²)	9.111.259,00	5.150.000,00		
Perímetro (P) (m)	104.937,03	44.730,00		
Comprimento Máximo efetivo (L _e) (m)	4.545,96	3.870,00		
Profundidade Média (Z _{med}) (m)	8,95	5,63		
Profundidade Máxima (Z _{max}) (m)	47,30	21,37		
Profundidade Relativa (Z _r)	1,39 %	0.83%		
Índice de Desenvolvimento de Perímetro (D _p)	9,73	5,52		
Fator de Envolvimento (F)	29,08	23,55		

Vargem das Flores: Reservatório pequeno e Serra Azul: Reservatório médio (STRASKRABA, 1999).

Vargem das Flores

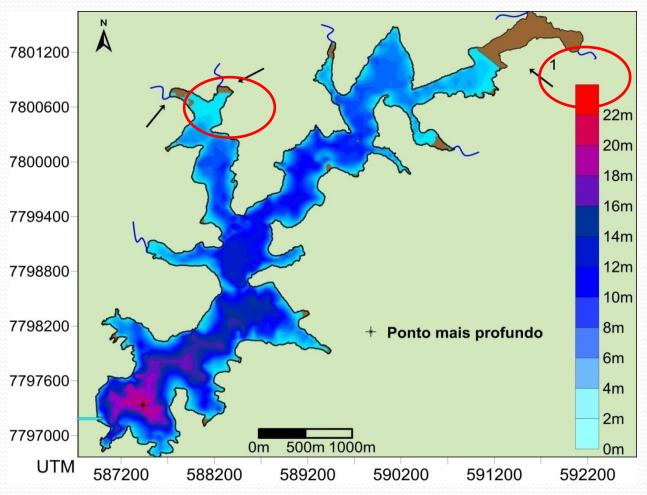


Figura 8. Carta batimétrica do Reservatório Vargem das Flores, para a cota 837,7.

- •18.330 pontos batimétricos
- •Área mais assoreada 2.400.000m².
- Ribeirão Betim e o córrego Água Suja são as áreas mais afetadas

Causas:

- Desmatamento
- Urbanização
- Lançamentos de esgoto.
- Acúmulo de lixo.
- Atividades agrícolas.
- Atividades industriais.

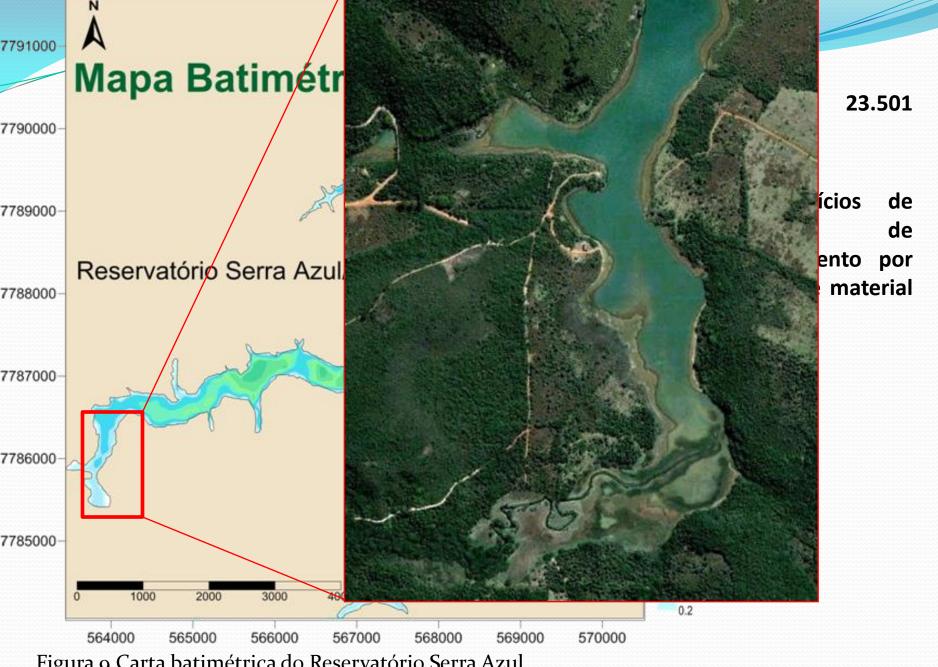


Figura 9. Carta batimétrica do Reservatório Serra Azul

Resultados

Tabela 3. Parâmetros morfométricos da Lagoa Central e de reservatórios da RMBH de estudos realizados pelo LGAR.

Corpos d'água	Α	V	Р	Z _{MAX}	Z _{MED}	Z _R	DV	DP	FE
	m²	m³	m	m	m	%	υv	DF	F.
Pampulha	1.968.433	9.998.240	14.889	16,2	5,1	1,0	0.94	2,97	49,74
Lagoa do Nado	15.018	40.562	1.193	7,6	2,7	5,5	1,07	2,75	53,00
Lagoa Central	1.700.000	7.060.000	6.467	7,3	4,0	0,5	1,66	1,38	6,65
Ibirité	2.050.00	11.600.000	14.014	17,7	5,6	1,1	0,96	2,74	_
Vargem das Flores	5.151.798	29.007.704	44.73	21,4	5,6	0,8	0,79	5,52	23,55
Serra Azul	9.111.259	81.550.095	104.94	47,30	8,95	1,39	-	9,73	29,08

Serra Azul: maior perímetro, área e volume

Serra Azul e Vargem das Flores: maior D_p o que reflete o fato de serem reservatórios dendríticos mais sujeitos a exibirem compartimentos mais poluídos. Altos valores de fator de envolvimento indicam que grandes quantidades de material sólido e nutrientes podem ser carreadas - indiretamente assentamentos urbanos.

Vargem das Flores: apresenta baixos valore de profundidade relativa (Z_{R)} se comparado aos outros reservatórios menores da RMBH

Serra Azul

Comparativo dos dados atuais com os dados da literatura de 1004.

o Esses valores indicam um indício de assoreamen

Tabela 1 - Comparativo dos dados morfométricos atuais com os encontrados n							
Parâmetros	Copasa	Dados	AQ 100 3 <				
	(2004)	atuais (2009)	4				
Área	7,5 km ²	9,11 km ²	17/5%				
Volume	8,8 x 10 ⁷ m ³	8,16 x 10 ⁷ m ³	7,2%				
Prof. máxima	40 m	47,3 m	15,4%				
Prof. média	11,73 m	8,95 (m)	23,7%				

R\$26.752.000,00

Assoreamento no Reservatório de Vargem das Flores

Assoreamento em Vargem das Flores

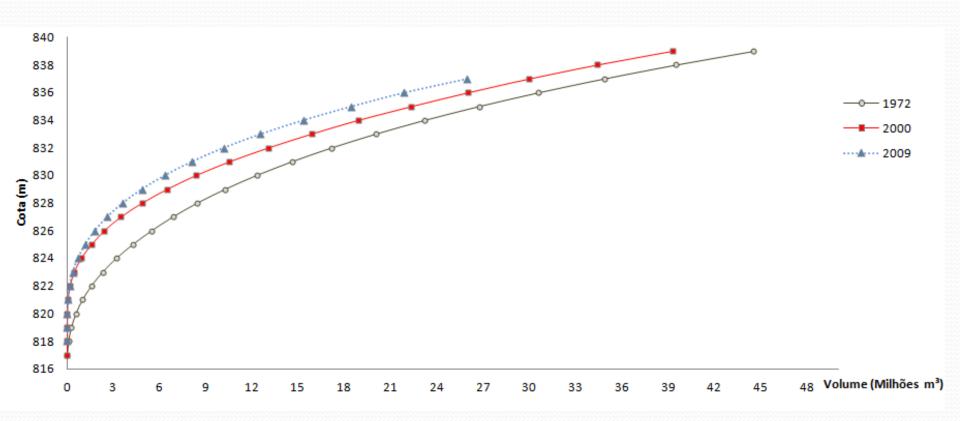


Figura 10. Relação Cota-Volume do reservatório de Vargem das Flores para o ano de 1972 (volume original), 2000 e 2009.

A perda de vida útil reflete-se nos parâmetros morfométricos das represas

Assoreamento em Vargem das Flores

- A perda de volume em 9 nove anos (última década) foi próxima a dos primeiros 28 anos de operação do reservatório
- A perda anual (2000-2009) foi quase 3x maior que a dos primeiros 28 anos.

Tabela 4. Valores de área e volume por cota nos anos em que foram							
realiza	alizados inventário - 14%				11.6%		
	19	972 - 14	70 20	000		009	
Cota	Área	Volume	Area	Volume		Volume	
	(m²)	(P.)	(m²)	(m ^s	Área (m²)	(m³)	
838	4.844.423	39 64.375	4.620.625	34.3 2.133	-		
837,7	-		-		5.151.798	29.007.704	
837	4.436.451	34.825.433	4.154.011	29.966.884	4.242.728	25.921.565	
836	4.050.200	30.583.573	3.749.729	26.016.739	3.733.382	21.861.417	
835	3.685.236	26.717.291	3.611.783	22.336.198	3.317.105	18.424.858	
834	3.341.115	23.205.520	3.262.256	18.900.661	2.932.314	15.306.452	
833	3.017.387	20.027.644	2.861.333	15.841.056	2.574.025	12.556.028	
832	2.713.595	17.163.496	2.699.011	13.061.279	2.222.750	10.151.608	
831	2.429.272	14.593.514	2.340.969	10.542.407	1.900.315	8.092.305	
830	2.163.944	12.298.184	2.018.429	8.364.699	1.620.206	6.335.267	
829	1.917.130	10.258.892	1.728.180	6.493.271	1.354.258	4.851.430	
828	1.688.335	8.457.444	1.519.831	4.870.074	1.113.481	3.616.490	
827	1.477.057	6.875.924	1.237.737	3.493.702	894.175	2.617.413	
826	1.282.782	5.497.145	919.458	2.419.039	714.523	1.809.253	
825	1.159.865	4.276.337	747.702	1.586.937	549.377	1.182.913	
824	979.456	3.207.947	597.515	915.731	402.823	712.511	
823	808.621	2.315.272	344.212	450.651	262.090	378.729	
822	648.114	1.588.383	195.672	184.182	160.076	173.895	
821	498.881	1.016.511	86.122	46.980	78.222	57.689	
820	362.156	587.813	1.034	4.878	18.162	8.801	
819	239.641	289.015	597	405	2.840	1299	
818	133.908	104.786	156	52	209	Q	
817	49.513	16.504	Q	Q	Q	Q	
816	Q	Q	Q	Q	Q	Q	
Fonte: O	Fonte: Os dados de 1972 e 2000 referem-se ao relatório técnico da HDC 2000.						

Assoreamento em Vargem das Flores

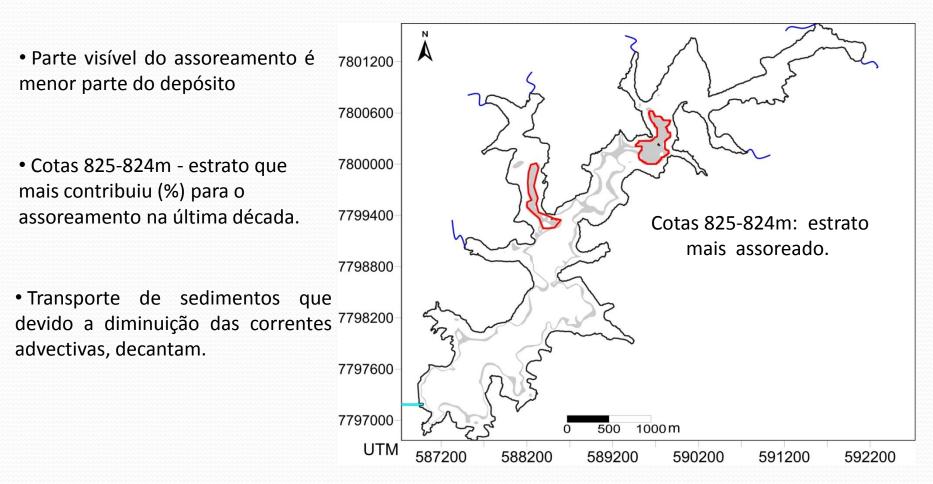


Figura 11. Área do reservatório destacando em cinza as regiões de ocorrência do estrato entre as cotas 824-825m

Previsões de vida ùtil do reservatório de Vargem das Flores

Tabela 5. Estimativas de tempo necessário para assoreamento de determinadas cotas, com base em suas respectivas taxas de deposição de sedimento por ano.

СОТА	TEMPO (ANOS)					
	1972-2000	0* 20	00-2009**			
837	172,7		57,7			
828,1	28,9		8,3			
831,8	72,2		21,7			
825	9,1		2,9			
* taxa	anual de	assoreamento	173519	m³		
** taxa anual de assoreamento 449479 m³						

^{• 28} anos -> 50% do volume equivalente ao volume útil do reservatório (828,10 e 838,64m).

Importante: Valores estimados considerando as taxas de assoreamento constantes

^{• 18} anos-> volume mínimo operacional (cota 830m) do reservatório estaria comprometido

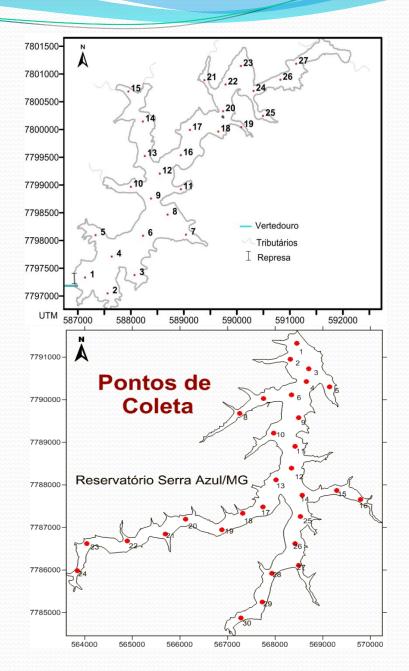
^{• 60} anos-> perda completa de seu espelho d'água

Conclusões

- O reservatório sofreu um incremento na sua taxa de assoreamento.
- Foram identificados dois períodos em relação à deposição de sedimento
- 1- 1972 a 2000: aumento gradual da ocupação da bacia hidrográfica, com o estabelecimento do processo de assoreamento no reservatório.
- 2- 2000-2009: grande incremento na taxa de assoreamento, recebendo, em apenas nove anos, a mesma quantidade de sedimentos que o reservatório recebeu nos seus 28 primeiros anos de operação.

Recomendações:

Todos os dois reservatórios devem sofrer programas regulares de monitoramento do assoreamento. No caso do reservatório de Vargem das Flores, esse programa deverá ser bianual e no caso do reservatório de Serra Azul, a batimetria poderá ser repetida a cada cinco anos.


No caso do reservatório de Vargem das Flores, recomendamos a adoção imediata de um amplo programa de contenção de aporte de sedimentos ao reservatório envolvendo componentes de Educação Ambiental, saneamento, controle de ocupação urbana, estabelecimento dos limites de capacidade de suporte para cada tipo de ocupação do solo na bacia do reservatório.

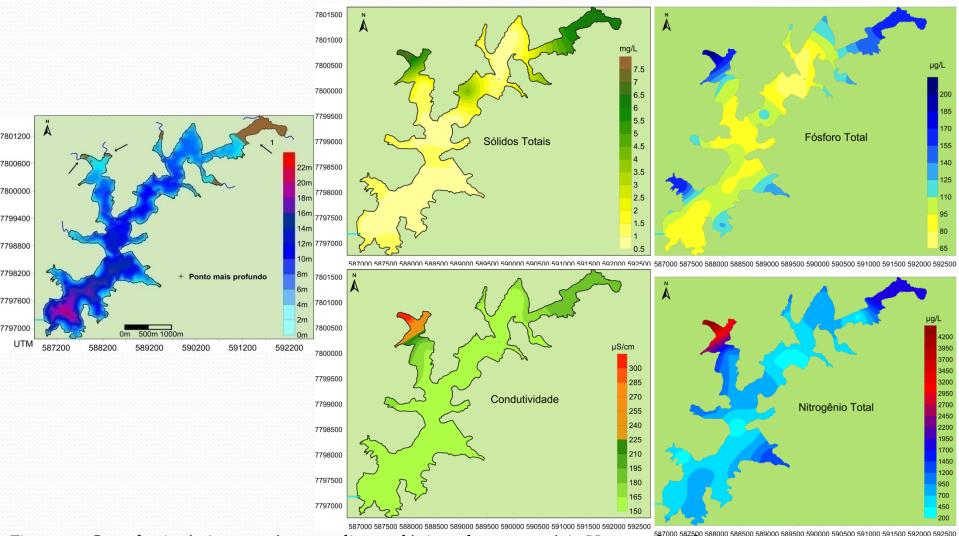
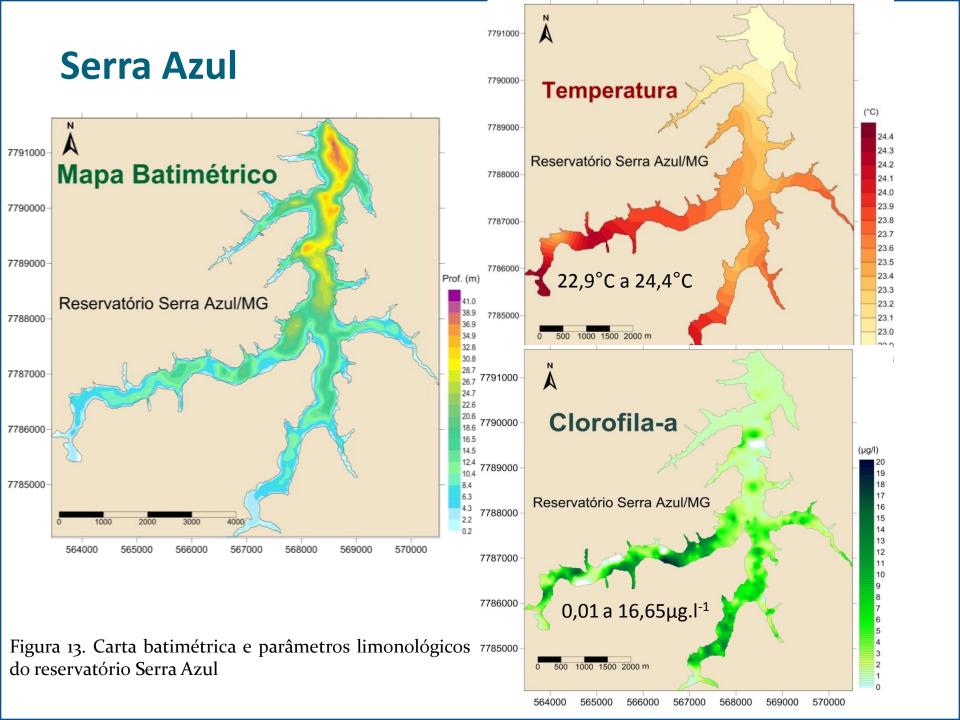
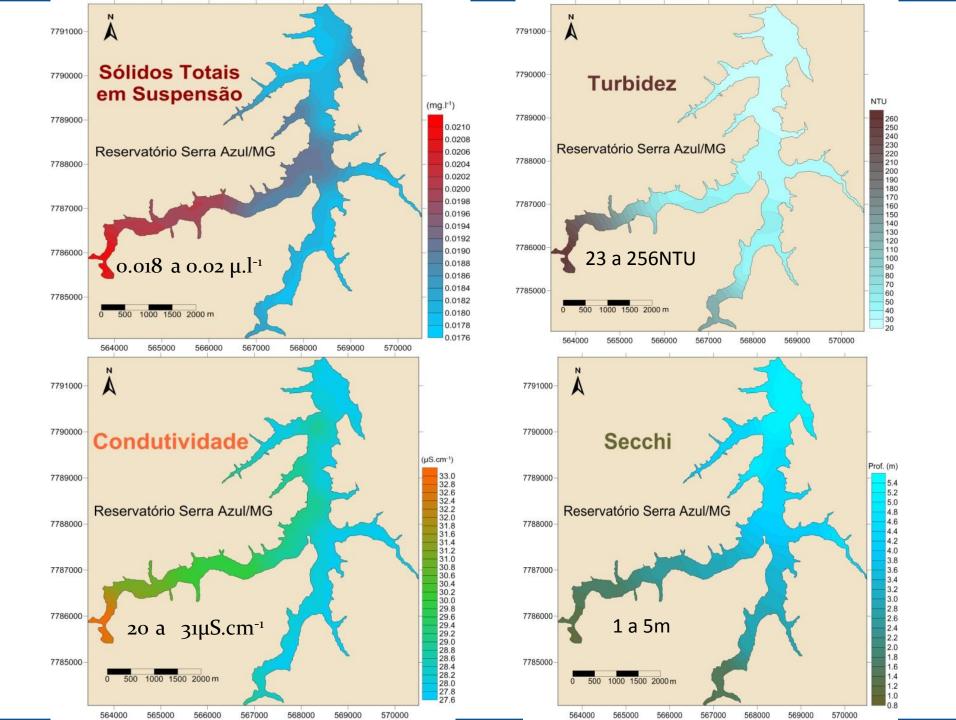
Recomendamos, ainda, o início de estudos de dragagem e recuperação do espelho de água e das áreas mais afetadas do reservatório.

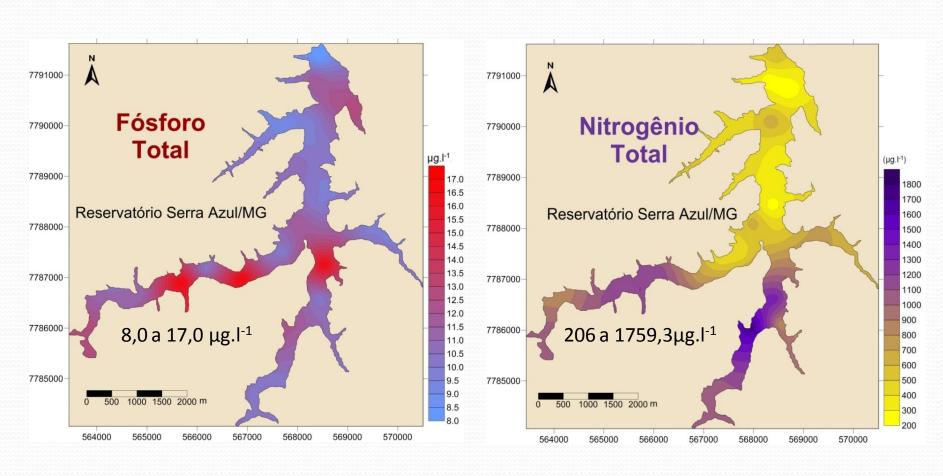
Parte II Limnologia de Reservatórios

Variáveis Limnológicas

- Temperatura
- Oxigênio dissolvido
- Clorofila-a
- Turbidez
- •pH
- Nitrogênio Total
- Amônia
- Série Nitrogenada
- ■Fósforo
- Condutividade
- ■Índice de Estado Trófico

Vargem das Flores


Figura 12. Carta batimétrica e parâmetros limonológicos do reservatório Vargem das Floresa

Serra Azul

Fósforo total e nitrogênio total

Serra Azul

IET (clorofila-a e transparência)

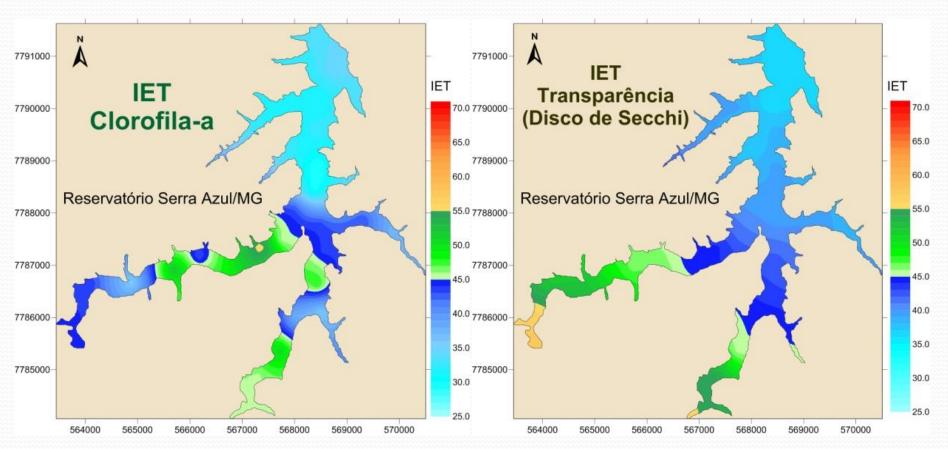


Figura 14- IET Clorofila-a

Figura 15- IET Transparência

Conclusões

Todos dois reservatórios exibiram forte heterogeneidade espacial da qualidade de água.

As áreas mais eutróficas geralmente estiveram associadas às entradas dos tributários e também às áreas mais assoreadas.

Os braços de ambos os reservatórios apresentaram diferenças notáveis na qualidade de água que estão diretamente associadas aos padrões de usos do solo no presente e no passado.

O monitoramento intensivo na componente horizontal revelouse adequado para demonstrar os efeitos da eutrofização, dos diferentes usos do solo, demonstrando ser uma ferramenta eficiente na tomada de decisões voltadas à gestão ambiental.

Recomendações:

- Monitoramento constante não só do reservatório, mas dos tributários que o alimentam.
- Monitoramento de uma área maior no entorno do reservatório.
- Realizar um programa de recomposição da ictiofauna dos reservatórios.
- Recomposição das matas ciliares dos principais tributários.
- Fiscalizar, monitorar e estimar a deposição de finos de mineração, bem como o tipo e quantidade dos agrotóxicos e metais traços utilizados nos cultivos do entorno nos tributários que alimentam o reservatório.

Parte III Modelagem Hidrodinâmica

Modelagem Hidrodinâmica Fases e etapas

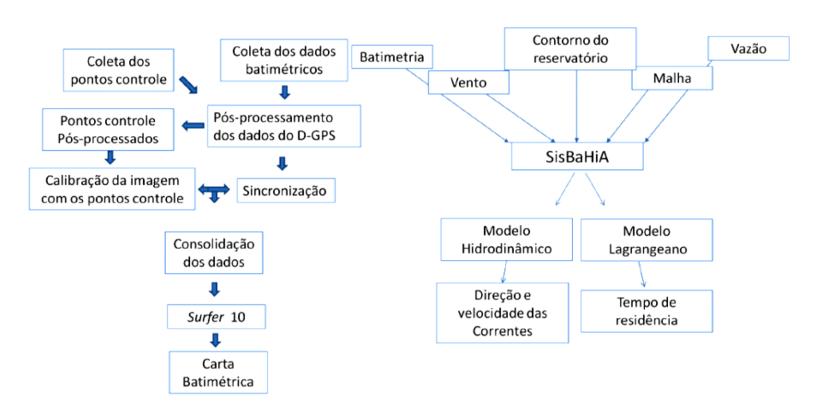
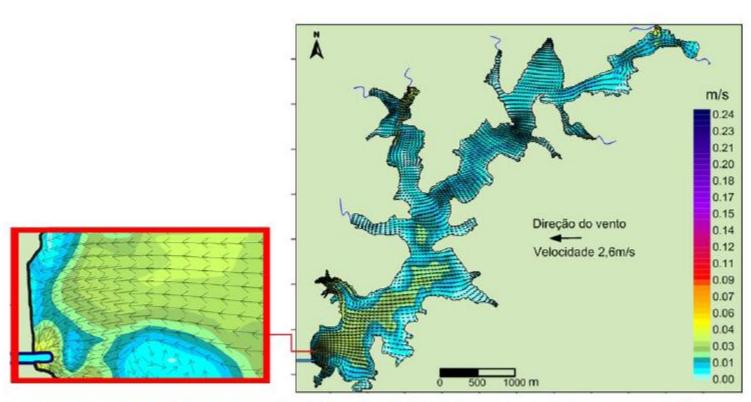
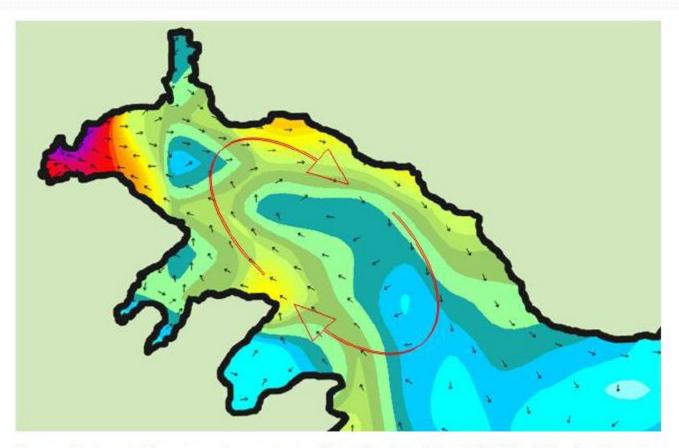



Figura 4. Fluxograma simplificado das etapas envolvidas na confecção da carta batimétrica (à esquerda) e na calibração do modelo hidrodinâmico (à direita).


SisBaHiA® - Sistema Base de Hidrodinâmica Ambiental COPPE/UFRJ.

Vargem das Flores

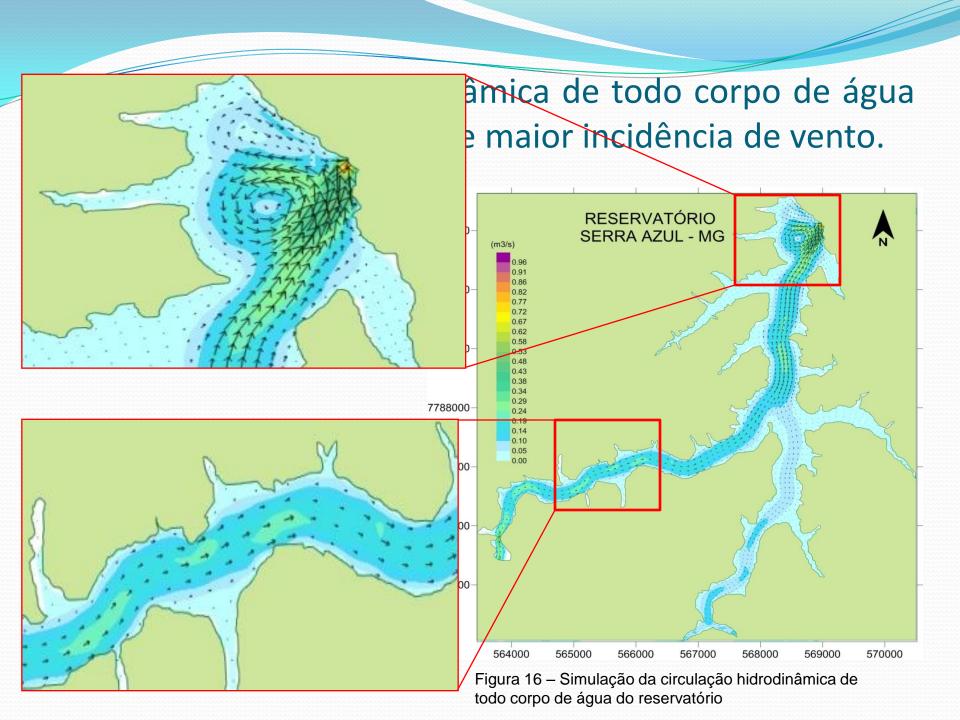


Figura 13. Campo de velocidades determinado pelo modelo Hidrodinâmico 3D à profundidade de 0,5m para o instante de simulação 1.339.200s (a 10m de profundidade), referente às 12 horas da data da coleta de 06.10.10, com ventos de direção 90º Azimute e velocidade de 2,6m.s⁻¹. Área destacada pelo retângulo vermelho em maior aumento, ilustrando o campo de velocidades de corrente de água na região da torre de captação de água.

Vargem das Flores

Figura 15. Campo de vetores das correntes determinado pelo modelo Hidrodinâmico 3D para o instante de simulação referente às 12:00 horas do dia da coleta de 06.10.10, na área A. As setas em vermelho indicam a formação do vórtice.

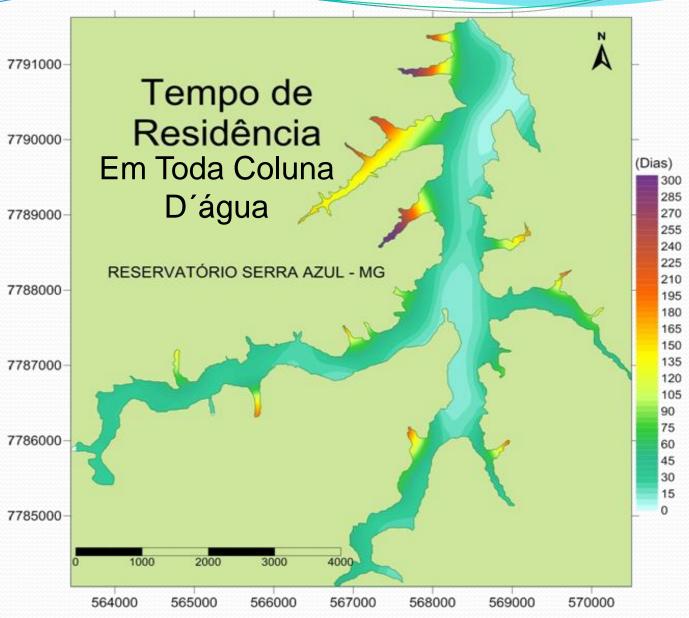


Figura 17 – Tempo de residência em toda coluna de água.

Simulação da mistura em toda massa de água do reservatório.

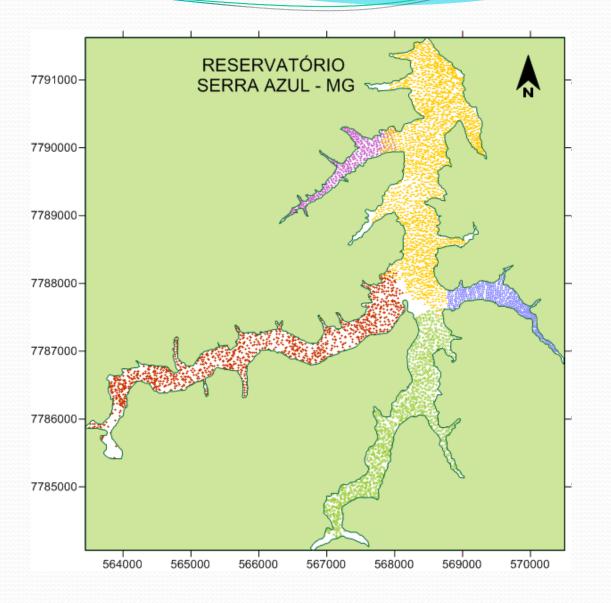


Figura 18 – Simulação da movimentação de partículas em toda massa de água do reservatório

Conclusão

- Os reservatórios são ambientes complexos e foram observados fenômenos importantes tais como a formação de vórtex. Foi também muito clara a influência dos tribuátios e do vertedouro.
- A circulação de água do reservatório é bastante complexa e muito variável em função das condições do clima. Ela influencia toda a estrutura da comunidade e a qualidade de água.
- Os tempos de residência variam muito dentro do reservatório e nas regiões com maior tempo haverá um maior acúmulo de nutrientes e de poluentes.

Muito Obrigado!

Ricardo Motta Pinto Coelho LGAR – UFMG

http://ecologia.icb.ufmg.br/lgar/

Tel 031 3409 2574